
Seed and Grow: An Attack Against Anonymized
Social Networks

Wei Peng∗, Feng Li†, Xukai Zou∗ and Jie Wu‡
∗Department of Computer and Information Science

†Department of Computer, Information and Leadership Technology
Indiana University-Purdue University, Indianapolis, Indianapolis, IN, U.S.A.

‡Department of Computer and Information Science
Temple University, Philadelphia, PA, U.S.A.

Abstract—Digital traces left by a user of an online social
networking service can be abused by a malicious party to
compromise the person’s privacy. This is exacerbated by the
increasing overlap in user-bases among various services. In this
paper, we propose an algorithm,Seed and Grow, to identify users
from an anonymized social graph based solely on graph structure.
The algorithm first identifies a seed sub-graph, either planted by
an attacker or divulged by collusion of a small group of users,
and then grows the seed larger based on the attacker’s existing
knowledge of the users’ social relations. Our work identifies and
relaxes implicit assumptions taken by previous works, eliminates
arbitrary parameters, and improves identification effectiveness
and accuracy. Experiments on real-world collected datasets
further corroborate our expectation and claim.

Keywords-anonymity; privacy; social networks; topology.

I. I NTRODUCTION

A lunch-time walk across a university campus in the United
States might lead one to marvel at the prevalence of Internet-
based social networking services, among which Facebook
and Twitter are two big players in the business. Indeed, as
Alexa’s “top 500 global sites” statistics retrieved on May 2011
indicates, Facebook and Twitter rank at 2nd and 9th place,
respectively.

One characteristic of online social networking services is
their emphasis on users and their connections, rather than
on content as traditional Web services do. These services,
while providing convenience to users, accumulate a treasure of
user-produced contents and users’ social connection patterns
which were only available to large telecommunication service
providers or intelligence agencies a decade ago.

Data from social networks, once published, are of great
interest to a large audience. For example, with the massive data
sets, sociologists can verify hypotheses on social structures and
human behavior patterns. Third-party application developers
can produce value-added services like games based on users’
contact lists. Advertisers can more accurately infer a user’s
demographic and preference profile and can thus issue targeted
advertisements. Indeed, the 22 December 2010 revision of
Facebook’s Privacy Policy has the following clause, “we allow
advertisers to choose the characteristics of users who will
see their advertisements and we may use any of the non-
personally identifiable attributes we have collected (including
information you may have decided not to show to other users,

Before After

A

B C

D

E

F

G

Fig. 1. Each node represents a user, with the user’s ID attached. Naive
anonymization simply removes the ID, but retains the network structure.

such as your birth year or other sensitive personal information
or preferences) to select the appropriate audience for those
advertisements”.

Due to the strong correlation between users’ data and the
users’ social identity, privacy is a major concern in dealing
with social network data in contexts such as storage, process-
ing and publishing. Privacy control, through which a user can
tune the visibility of her profile, is an essential feature inany
major social networking service.

The common practice for privacy-sensitive social network
data publishing is through anonymization, i.e., remove plainly
identifying labels such as name, social security number, postal
or e-mail address, and retain the structure of the network as
published data. Figure 1 is a simple illustration of this process.
The motivation behind such processing prior to data publishing
is that, by removing the “who” information, the utility of the
social networks is maximally preserved without compromising
users’ privacy. [1] reports several high-profile cases in which
“anonymity has been unquestioningly interpreted as equivalent
to privacy”.

Can the aforementioned “naive” anonymization technique
achieve privacy preservation in the context of privacy-sensitive
social network data publishing? This interesting and important
question was posed only recently in [2]. A few privacy attacks
have been proposed to circumvent the naive anonymiza-
tion protection (e.g., [1][2]). Meanwhile, more sophisticated
anonymization techniques (e.g., [3][4][5][6][7]) have been
proposed to provide better privacy protection. Nevertheless,
research in this area is still in its infancy and a lot of work,
both in attacks and defenses, remains to be done.

In this paper, we describe a two-stage identification attack,

2

Seed-and-Grow, against anonymized social networks. The
name suggests a metaphor for visualizing its structure and
procedure. The attacker first plants aseed into the target
social network before its release. After the anonymized data
is published, the attacker retrieves the seed and makes itgrow
larger, thereby further breaching privacy.

More concretely, our contributions include:
• We propose an efficient seed construction and recovery

algorithm (Section III-A). More specifically, we drop the
assumption that the attacker has complete control over
the connection between the seed and the rest of the
graph (Section III-A1); the seed is constructed in a way
which is only visible to the attacker (Section III-A1); the
seed recovery algorithm examines at most the two-hop
local neighborhood of each node, and thus is efficient
(Section III-A2).

• We propose an algorithm which grows the seed (i.e.,
further identifies users and hence violates their privacy)
by exploiting the overlapping user bases among social
network services. Unlike previous works which rely
upon arbitrary parameters for probing aggressiveness, our
algorithm automatically finds a good balance between
identification effectiveness and accuracy (Section III-B).

• We demonstrate significant improvements in identifica-
tion effectiveness and accuracy of our algorithm over
previous works with real-world social-network datasets
(Section IV).

In light of the increasing overlapping user bases among
social network services, businesses and government agencies
should realize thatprivacy protection is not only an individual
responsibility but also a social one. Our work calls for a
re-evaluation of the current privacy-protection practices in
publishing social-network data.

II. BACKGROUND AND RELATED WORK

A natural mathematical model to represent a social network
is a graph. A graphG consists of a setV of vertices and a set
E ⊆ V × V of edges. Labels can be attached to both vertices
and edges to represent their attributes.

In this context,privacycan be modeled as the knowledge of
existence or absence of vertices, edges, or labels. One special
category is graph metrics, in which privacy is modeled, not in
terms of individual components of a graph (e.g., vertices),but
in terms of metrics that originate from social network analysis
studies [9], such as betweenness, closeness, and centrality.

The naive anonymization is to remove those labels which
can be uniquely associated with one vertex (or a small
group of vertices) fromV . This is closely related to tra-
ditional anonymization techniques employed on relational
datasets [10]. However, the additional information conveyed
in edges and its associated labels opens up a new dimension
of potential privacy breaches, from which the authors of [2]
proposed an identification attack against anonymized graph
and coined the termstructural steganography.

Beside privacy, other dimensions in formulating privacy
attacks against anonymized social networks, as identified in

numerous previous works (e.g., [4][5][7][8]), are the published
data’sutility, and the attacker’sbackground knowledge.

Utility of published data measures information loss and
distortion in the anonymization process. The more information
that is lost or distorted, the less useful published data is.
Existing anonymization schemes (e.g., [3][4][5][7][8]) are all
based on the trade-off between the usefulness of the published
data and the strength of protection. For example, [7] proposes
an anonymization algorithm in which the original social graph
is partitioned into groups before publication, and “the number
of nodes in each partition, along with the density of edges that
exist within and across partitions”, are published.

Although trade-off between utility and privacy is necessary,
it is hard, if not impossible, to find a proper balance in gen-
eral. Besides, it is hard to prevent attackers from proactively
collecting intelligence on the social network. It is especially
relevant today as major online social networking services
provide APIs to facilitate third-party application development.
These programming interfaces can be abused by a malicious
party to gather information about the network.

Background knowledgecharacterizes the information in
the attacker’s possession which can be used to compromise
privacy protection. It is closely related to what is perceived as
privacy in a particular context.

The attacker’s background knowledge is not restricted to
the target’s neighborhood in a single network, but may span
multiple networks and include the target’s alter egos in allof
these networks [1]. This is a realistic assumption. Consider
the status quo in the social networking service business,
in which service providers, like Facebook and Flickr, offer
complementary services. It is very likely that a user of one
service would simultaneously use another service. As a person
registers to different social networking services, her social
connections in these services, which somehow relates to her
social relationships in the real world, might reveal valuable
information which the attacker can make use of to threaten
her privacy.

The above observation inspires “Seed and Grow”, which
exploits the increasingly overlapping user-bases among social
networking services. A concrete example is helpful in under-
standing this idea.

MOTIVATING SCENARIO. Bob, as an employee of a social
networking service provider F-net, acquires from his employer
a graph, in which vertices represent users and edges represent
private chat logs. The edges are labeled with attributes such as
timestamps. In accordance with its privacy policy, F-net has
removed the user IDs from the graph before giving it to Bob.

Bob, being an inquisitive person, wants to know who these
users are. Suppose, somehow, Bob identifies 4 of these users
from the graph (this will become clear in the “Seed Construc-
tion” and “Seed Recovery” interludes in Section III-A). By
using a graph (with the user ID tagged) he crawled a month
ago from the website of another service provider T-net (the
4 identified persons are also users of T-net), and by carefully
measuring structural similarity of these graphs, he manages to

3

identify 100 more persons from the anonymized graph from F-
net (the “Dissimilarity” interlude in Section III-B will illustrate
how to do this). By doing so, Bob defeats his employer’s
attempt to protect the customers’ privacy.

We conclude this section with a brief comment on our
choice of model. We use anundirectedgraph to represent
social networks, which arises naturally in scenarios where
the relation under investigation ismutual, e.g., friend requests
must be confirmed in Facebook. In contrast, adirectedgraph
is a natural model in other cases, e.g., a fan follows a movie
star in Twitter. Directed graphs reveal more information about
the social relationships than their undirected counterparts. By
considering undirected graphs, our results can be extended,
without difficulty, to directed graphs.

III. SEED AND GROW: THE ATTACK

This section studies an attack that identifies users from
an anonymized social graph. Let an undirected graphGT =
{VT , ET } represent thetargetsocial network after anonymiza-
tion. We also assume that the attacker has an undirected graph
GB = {VB , EB} which models hisbackground knowledge
about the social relationships among a group of people (i.e.,
VB are labeled with the identities of these people). The
motivating scenario demonstrates one way to obtainGB . The
attack concerned here is to infer the identities of the vertices
VT by considering structural similarity betweenGT andGB .

We assume that,before the release ofGT , the attacker
obtains (either by creating or stealing) a few accounts and
connects them with a few other users inGT (e.g., chatting
in the motivating scenario). The attacker does not need much
effort to do this because these are only basic operations in a
social networking service. Besides user ID, the attacker knows
nothing about the relationships between other users inGT .
Furthermore, unlike previous works, wedo not assume that
the attacker has complete control over the connections; he
just knowsthem beforeGT ’s release. This is more realistic.
An example is a confirmation-based social network, in which
a connection is established only if the two parties confirm it:
the attackercan decline but not imposea connection.

In contrast to a pure structure-based vertex matching algo-
rithm [11], Seed-and-Grow is atwo-stagealgorithm.

The seedstage plants (by obtaining accounts and estab-
lishing relationships) a small specially designed subgraph
GF = {VF , EF } ⊆ GT (GF reads as “flag” or “fingerprint”)
into GT before its release. After the anonymized graph is
released, the attacker locatesGF in GT . The neighboring
verticesVS of GF in GT are readily identified and serve as
an initial seed to be grown.

Thegrow stage is essentially comprised of a structure-based
vertex matching, which further identifies vertices adjacent to
the initial seedVS . This is a self-reinforcing process, in which
the seed grows larger as more vertices are identified.

A. Seed

Successful retrieval ofGF in GT is guaranteed ifGF

exhibits the following structural properties.

2

1

6

34

57

Fig. 2. A randomly generated graphGF may be symmetric. Vertices in
GF = {v1, . . . , v5} are double-circled.

• GF is uniquely identifiable, i.e., no subgraphH ⊆ GT

exceptGF is isomorphic toGF . For example, in Fig-
ure 2, subgraph{v1, v2, v3} is isomorphic to subgraph
{v1, v4, v5} because there is a structure-preserving map-
ping v1 7→ v1, v2 7→ v4, v3 7→ v5 between them.
Therefore, they are structurally indistinguishable.

• GF is asymmetric, i.e., GF does not have any non-
trivial automorphism. For example, in Figure 2, subgraph
{v1, v2, . . . , v5} has an automorphismv1 7→ v1, v2 7→
v3, v3 7→ v4, v4 7→ v5, v5 7→ v2.

In practice, since the structure of other nodes in the network
is unknown to the attacker before its release, the uniquely
identifiable property is not realizable. However, as was proved
in [2], with a large enough size and randomly generated
edges under the Erdös-Ŕenyi model [12],GF will be uniquely
identifiable with high probability.

Although a randomly generated graphGF is very likely to
be uniquely identifiable inGT , it may violate the asymmetric
structural property. However, because the goal of seed is
to identify the initial seedVS rather than the flagGF , the
asymmetric requirement forGF can be relaxed. Foru ∈ VS ,
let VF (u) be the vertices inVF which connects withu
(|VF (u)| ≥ 1 by the definition ofVS). For each pair of
vertices, sayu andv, in VS , as long asVF (u) andVF (v) are
distinguishable inGF (e.g., |VF (u)| 6= |VF (v)| or the degree
sequences are different; more precisely, no automorphism of
GF exists which mapsVF (u) to VF (v)), and onceGF is
recovered fromGT , VS can be identified uniquely.

Based on these observations, we propose the following
method for constructing and recoveringGF .

1) Construction:The construction ofGF starts with astar
structure. We call the vertex at the center of the star thehead
of GF and denote it byvh. In other words,vh connects to
every other vertices inGF and no others.

The vertices inVF − {vh} are connected with some other
verticesVS (the initial seed) inGT , which the attacker has
no complete control over (he can only ensure thatVF (u) 6=
VF (v) for any pair of verticesu andv from VS by declining
connections which render indistinguishable vertices inVS).

As discussed before, the attacker has to ensure that no
automorphism ofGF will map VF (u) to VF (v). Therefore, he
first connects pairs of vertices inVF −{vh} with a probability
of p (in the fashion of the Erd̈os-Ŕenyi model). Then, he
collects theinternal degreeDF (v) for every v ∈ VF − {vh}
(i.e., v’s degree inGF rather than inGT ; hence internal
degree) into anorderedsequenceSD.

Now, for everyv ∈ VS , v has a corresponding subsequence
SD(v) of SD according to its connectivity withVF . For

4

Algorithm 1 Seed construction.
1: CreateVF = {vh, v1, v2, . . .}.
2: Given connectivity betweenVF andVS .
3: Connectvh with v for all v ∈ VF − {vh}.
4: loop
5: for all pairsva 6= vb in VF − {vh} do
6: Connectva andvb with a probability ofp.
7: end for
8: for all u ∈ VS do
9: Find SD(u).

10: end for
11: if SD(u) are mutually distinct for allu ∈ VS then
12: return
13: end if
14: end loop

example, in Figure 2,v6 connects tov2 and v3 from GF ;
sinceDF (v2) = DF (v3) = 1, SD(v6) = 〈1, 1〉. As long as
SD(u) 6= SD(v) for u andv from VS , no automorphism ofGF

will map VF (u) to VF (v). Therefore, the attacker guarantees
unambiguous recovery ofVS by ensuring that the randomly
connectedGF satisfies this condition. If not, the attacker
will simply redo the random connection amongVF − {vh}
until it does (which it eventually will since we assume that
VF (u) 6= VF (v) for any pairu andv from VS). Algorithm 1
summarizes this procedure.

SEED CONSTRUCTION. Bob had created 7 accountsvh and
v1, . . . , v6, i.e., VF . He first connectedvh with v1, . . . , v6.
After a while, he noticed that usersv7 to v10 are connected
with v1, . . . , v6, i.e., VS = {v7, . . . , v10}.

Then, he randomly connectedv1, . . . , v6 and got the re-
sulting graphGF as shown in Figure 3. The ordered internal
degree sequenceSD = 〈2, 2, 2, 3, 3, 4〉.

Bob found SD(v7) = 〈2〉, SD(v8) = 〈2, 2〉, SD(v9) =
〈3, 3, 4〉, and SD(v10) = 〈2, 3〉. Since they are mutually
distinct, Bob was sure that he could identifyv7 to v10 once
VF was found in the published anonymized graph.

The degree of head vertexvh, the ordered internal degree
sequenceSD and the subsequences chosen forVS are the
secretsheld by the attacker. As shown in Section III-A2,
these secrets are used to recoverGF from GT and thereafter
to identify VS . From the defender’s point of view, without
knowing the secrets, there is no structure which characterizes
GF due to the random nature in seed construction. Therefore,
GF is visible only to the attacker.

2) Recovery:OnceGF has been successfully planted and
GT is released, the recovery ofGF from GT consists of a
systematic check of the attacker’s secrets. The first step is
to find a candidateu for the head vertexvh in GT by degree
comparison. Then, the ordered internal degree sequence of the
candidate flag graph (i.e., 1-hop neighborhood ofu) and the
subsequence secret of the candidate initial seed (i.e., exact
2-hop neighborhood ofu) are checked. If the candidate flag
graph passes these secret checks, it is identified withGF , and
its neighbors are identified withVS by subsequence secret
comparison. Algorithm 2 has the details.

h

1

2

3

4
5

6

7

8

9

10

Fig. 3. An illustration of the seed stage. Vertices in the flagGF =
{vh, v1, . . . , v6} are double-circled. The ordered internal degree sequence
SD = 〈2, 2, 2, 3, 3, 4〉. The internal degree subsequence for the neighboring
verticesVS = {v7, . . . , v10} of GF areSD(v7) = 〈2〉, SD(v8) = 〈2, 2〉,
SD(v9) = 〈3, 3, 4〉, andSD(v10) = 〈2, 3〉. Since they are mutually distinct,
VS can be uniquely identified onceGF is recovered.

SEED RECOVERY.
Bob started to check the anonymized graphGT to find the

flag. He did this by examining all of the vertices inGT for
one with degree6. After he reached acandidate headvc with
degree6, he isolated it along with its candidate flag graph
(red in Figure 3), and the internal degrees for each of the
neighbors. He found that the ordered internal degree sequence
〈2, 2, 2, 3, 3, 4〉 match with that ofVF . He then proceeded to
isolatevc’s exact 2-hop neighbors and checked their ordered
internal degree subsequences with the candidate flagGc. He
found they again matched with those ofVS .

Bob was convinced that he had foundGF . By matching the
ordered internal degree subsequences ofVc, he identifiedv7,
v8, v9 and v10. For example, for a 2-hop neighboru ∈ Vc,
which is connected with three 1-hop neighbors with internal
degrees 3, 3 and 4, he identifiedu with v9.

The motivation for incorporating the head vertex technique
in the seed construction stage is clear now. The only connec-
tions vh has areinternal ones. Therefore, once a candidate
head vertexu is found, the candidate flag can be readily
determined by reading off the 1-hop neighborhood ofu.
Thereafter, no probing or backtracking is needed for finding
GF like in [1] and [2].

The efficiency of the algorithm is evident by observing that,
in Algorithm 2, the maximal level of nested loops is 3 (2
of them are on a vertex’s neighborhood) and no recursion is
involved. Because the 2-hop neighborhood ofuv (e.g.,VF ∪
VS) is controlled by the attacker (as secrets), if the size (i.e.,
the number of vertices) of the 2-hop neighborhood isN , the
complexity of the recovery algorithm isO(N |VT |).

B. Grow

The initial seed provides a firm ground for further identifi-
cation in the anonymized graphGT . Background knowledge
GB comes into play at this stage.

We have a partial mapping betweenGT andGB , i.e., the
initial seedVS in GT maps to its corresponding identities in
GB . Two examples of partial graph mappings are the Twitter
and Flickr datasets [1] and the Netflix and IMDB datasets [14].
The straightforward idea of testing all possible mappings for
the rest of the vertices has an exponential complexity, which is
unacceptable even for a medium-sized network. Besides, the

5

Algorithm 2 Seed recovery.
1: for all u ∈ GT do
2: if deg(u) = |VF | − 1 then
3: U ← exact 1-hop neighborhood ofu
4: for all v ∈ U do
5: d(v)← number ofv’s neighbors inU ∪ {u}
6: end for
7: s(u)← sort(d(v)|v ∈ U)
8: if s(u) = SD then
9: V ← exact 2-hop neighborhood ofu

10: for all w ∈ V do
11: U(w)← w’s neighbors inU
12: s(w)← sort(d(v)|v ∈ U(w))
13: end for
14: if 〈s(w)|w ∈ V 〉 = 〈SD(v)|v ∈ VS〉 then
15: {w ∈ V is identified withv ∈ VS if s(w) = SD(v)}
16: end if
17: end if
18: end if
19: end for

overlapping betweenGT andGB may well bepartial, so a
full mapping is either impossible or undesirable. Therefore,
the grow algorithm adopts a progressive and self-reinforcing
strategy, mapping multiple vertices at a time.

Figure 4 shows a small example.v7 to v10 have already
been identified in the seed stage (recall Figure 3). The task is
to identify other vertices in the target graphGT .

The grow algorithm centers around a pair ofdissimilarity
metrics between a pair of vertices from the target and the
background graph respectively. In order to enhance the iden-
tification accuracy and to reduce the computation complexity
and the false-positive rate, we introduce agreedy heuristic
with revisiting into the algorithm.

It is natural to start with those vertices inGT which connect
to the initial seedVS because they are more close to the
certain information, i.e., the already identified verticesVS . For
these vertices, their neighboring vertices can be divided into
two groups. Namely, for such a vertexu, its neighborhood in
GT is composed ofN T

m(u) (mappedneighbors) andN T
u (u)

(unmappedneighbors). For instance, in Figure 4,N T
m(u∗1) =

{u7, u8, u9} andN T
u (u∗1) = {u∗4}.

For the background graphGB , we can make similar defi-
nitions. Suppose the seedVS ⊆ VT maps toV ∗

S ⊆ VB . For a
V ∗

S ’s neighboring vertexv, let NB
m (v) bev’s neighbors inV ∗

S ,
and letNB

u (v) be the other (i.e., unmapped) neighbors. Hence,
in Figure 4,NB

m (v12) = {v9, v10} andNB
u (v12) = {v11, v16}.

We identify the mapped vertices inVS and V ∗

S so that
N T

m(u∗1)−NB
m (v12) = {u7, u8} = {v7, v8} in Figure 4.

For a pair of nodes,u ∈ VT and v ∈ VB , we define the
following pair of dissimilarity metrics:

∆T (u, v) =
|N T

m(u)−NB
m (v)|

|N T
m(u)|

, (1)

and:

∆B(u, v) =
|NB

m (v)−N T
m(u)|

|NB
m (v)|

, (2)

Target Background

7

*1

8

*2

9

*3

10

*4 *5 *6 *7

7

11

8 9

12

10

13 14 15 16

Fig. 4. An illustration of the grow stage. Vertices in the initial seedVS =
{v7, . . . , v10} are double-circled. Those vertices in the target graphGT with
labels starting with an asterisk are yet to be identified. Thetask of the grow
stage is to identify these vertices.

in which | · | is the number of set elements, i.e., set cardinality.
We have∆T (u∗1, v12) = |{u7, u8}|/|{u7, u8, u9}| = 2/3 ≈
0.667, and∆B(u∗1, v12) = |{v10}|/|{v9, v10}| = 1/2 = 0.5.
∆T (u, v) and∆B(u, v) together measure how differentu

andv’s mapped neighborhoods are. By its definition in Equa-
tions 1 and 2, both∆T (u, v) and∆B(u, v) are in the range
of [0, 1]. More precisely, when their mapped neighborhoods
are the same (N T

m(u) = NB
m (v)), we have∆T (u, v) =

∆B(u, v) = 0, which means thatu and v match perfectly
in regard to their mapped neighborhoods. Otherwise, when
N T

m(u)∩NB
m (v) = ∅, ∆T (u, v) = ∆B(u, v) = 1. The reason

to have two asymmetric metrics (in regard to the target and
background graphs) instead of a symmetric one is that we want
to choose those mappings which are the mutually best choices
for the graphs. Again, a concrete example helps.

1) Dissimilarity.: Bob first identified the tuples in Table I
which has the smallest∆T and∆B in both its row and column.
In this case, these tuples are(u∗1, v11) and (u∗3, v12). Since
they arefrom different rows and columns, they do not conflict
with each other. So Bob decided to mapu∗1 to v11 andu∗3

to v12.
He then addedv∗1 ↔ v11 and v∗3 ↔ v12 to the seed and

moved on to the next iteration of identification.

2) Greedy Heuristic:Bob’s story suggested a way of using
the dissimilarity metrics defined in Equations 1 and 2 to
iteratively grow the seed.

Since smaller dissimilarity implies better match, we identify
those tuples in the table like Table I which hassmallest∆T

and ∆B in both its row and column; these tuples are the
mutually best matches from/to the target graph to/from the
background graph. We then add the mappings corresponding
to these tuples to the seed and move on to the next iteration.

We gloss over a subtlety in the above description: if there
are conflicts in choice, i.e., there are more than one tuples
satisfying the above criterion in a row or a column, which
one shall we choose? Rather than randomly selecting a tuple,
we select the tuple thatstands outand add the corresponding
match to the seed. If there is still a tie, these tuples are
reckoned as indistinguishable under the dissimilarity metrics.
To reduce incorrect identifications, we refrain from addingthe
mapping to the seed in these scenarios.

DISSIMILARITY Bob applied the dissimilarity metrics de-
fined in Equations 1 and 2 to Figure 4 and got the results
shown in Table I.

6

TABLE I
DISSIMILARITY METRICS FOR PAIRS OF UNMAPPED VERTICES IN

FIGURE 4. EACH TUPLE CONSISTS OF A(∆T ,∆B) PAIR.

∆ u∗1 u∗2 u∗3

v11 (0.00, 0.00) (0.00, 0.33) (0.50, 0.67)
v12 (0.67, 0.50) (0.50, 0.50) (0.00, 0.00)

This boils down to the question of how to quantify the
concept of “a tuple standing out among its peers”. We define
aneccentricitymetric for this purpose in our algorithm. LetX
be a group of numbers (the same number can occur multiple
times). Theeccentricityof a numberx ∈ X is defined as:

EX(x) =

{

∆X(x)
σ(X)#X(x) if σ(X) 6= 0

0 if σ(X) = 0
. (3)

in which ∆X(x) is the absolute difference betweenx and its
closestdifferent value inX; #X(x) is the multitudeof x in
X, i.e., the number of elements equal tox in X; σ(X) is
the standard deviation ofX. The largerEX(x) is, the morex
stands out amongX.

Therefore, if there are conflictsin a row, these tuples have
the same∆T and∆B . For each such tuple, we collect the∆T

and∆B in the same columninto XT andXB respectively and
computeEXT

(∆T) andEXB
(∆B). If there is aunique tuple

with the largestEXT
(∆T) andEXB

(∆B), we pick it and add
the corresponding mapping to the seed; otherwise, no mapping
is added to the seed.

3) Revisiting: The dissimilarity metric and the greedy
search algorithm for optimal combination are heuristic in
nature. At an early stage with only a few seeds, there might be
quite a few mapping candidates for a particular vertex in the
background graph; we are very likely to pick a wrong mapping
no matter which strategy is used in resolving the ambiguity.If
left uncorrected, the incorrect mappings will propagate through
the grow process and lead to large-scale mismatch.

We address this problem by providing a way to re-examine
previous mapping decisions given new evidences in the grow
algorithm; we call thisrevisiting. More concretely, for each
iteration, we consider all vertices which have at least one seed
neighbor, i.e., those pairs of vertices on which the dissimilarity
metrics in Equations 1 and 2 are well-defined.

We expect the revisiting technique will increase the accuracy
of the algorithm. The greedy heuristic with revisiting is
summarized in Algorithm 3.

IV. EXPERIMENTS

We conducted a comparative study on the performance of
the Seed-and-Grow algorithm by simulation on real-world
social network datasets.

A. Setup

We used two datasets collected from different real-world
social networks in our study.

TheLivejournal dataset, which was collected from the
friend relationship of the online journal service, LiveJournal,
on 9–11 December 2006 [15], consists of5.2 million vertices

Algorithm 3 Grow.
1: Given the initial seedVS .
2: C = ∅
3: loop
4: CT ← {u ∈ VT |u connects toVS}
5: CB ← {v ∈ VB |v connects toVS}
6: if (CT , CB) ∈ C then
7: return VS

8: end if
9: C ← C ∪ {(CT , CB)}

10: for all (u, v) ∈ (CT , CB) do
11: Compute∆T (u, v) and∆B(u, v).
12: end for
13: S ← {(u, v)|∆T (u, v) and∆B(u, v) are smallest among

conflicts}
14: for all (u, v) ∈ S do
15: if (u, v) has no conflict inS or (u, v) has the uniquely

largest eccentricity among conflicts inS then
16: VS ← VS ∪ {(u, v)}
17: end if
18: end for
19: end loop

and 72 million links. The links are directed. As previously
discussed at the end of Section II, we conducted the experi-
ments with the more difficult setting of an undirected graph.
We retained an undirected link between two vertices if there
was a directed link in either direction.

The other dataset,emailWeek1, consists of200 vertices
and1, 676 links. This dataset, by its nature, is undirected.

Using datasets collected from different underlying social
networks helped to reduce bias induced by the idiosyncrasy
of a particular network in performance measurements.

The performance of the grow algorithm was measured by
its ability to identify the anonymous vertices in the target
graph. We derived the target and background graphs from each
dataset and used their shared vertices as theground truth to
measure against.

More precisely, we derived the graphs with the following
procedure. First, we chose a connected subgraph withN∩

vertices from the dataset, which served as ashared portionof
the background and target graphs. We then picked other two
sets of vertices (different from the previousN∩ vertices) with
NB −N∩ andNT −N∩ vertices, respectively, and combined
with shared portion graph to obtain the background graph
(with NB vertices) and the target graph (withNT vertices).
After this, NS (NS < N∩ and not necessarily connected)
vertices were chosen from the shared portion to serve as
the initial seed. Finally, random edges were added to the
target graph to simulate the difference between the target and
background graphs.

B. Seed

The Seed construction (Algorithm 1) and recovery (Algo-
rithm 2) algorithms ensure that, once the flag graphGF is
successfully recovered, the initial seedVS can be unambigu-

1http://www.infovis-wiki.net/index.php/SocialNetwork Generation.

7

TABLE II
THE ESTIMATE OF ESSENTIALLY DIFFERENT CONSTRUCTIONS FOR A FLAG

GRAPHGF WITH n VERTICES PRODUCED BYALGORITHM 1.

n 10 11 12 13

estimate 1.89× 106 9.70× 107 9.03× 108 1.54× 1011

ously identified. Therefore, the seed construction dependson
GF being uniquely recovered from the released target graph.

We randomly generated a number of modest-sized flag
graphs with 10 to 20 vertices and planted them into the
Livejournal dataset with Algorithm 1. We were able to
uniquely recover them from the resulted graph with Algo-
rithm 2 without exception.

To explain this result, we made the following estimation
on the number of essentially different (i.e., with different
ordered internal degree sequenceSD) constructions produced
by Algorithm 1.

For a flag graphGF with n vertices, there aren−1 vertices
beside the head nodevh. There are(n − 1)(n − 2)/2 pairs
among then − 1 vertices; the edge between each pair of
vertices can be either present or absent. Therefore, there are
2(n−1)(n−2)/2 different flag graphs.

However, some of them are considered the same by Al-
gorithm 1. For example, the ordered internal degree sequence
SD = 〈2, 2, 2, 3, 3, 4〉 in Figure 3. There are3, 2, and1 vertices
with an internal degree of2, 3, and 4, respectively; hence,
there are

(

6
3

)(

3
2

)(

1
1

)

different flag graphs with the same ordered
internal degrees sequence.

For any ordered internal degree sequenceSD, there are
at most

(

n−1
1

)(

n−2
1

)

· · ·
(

2
1

)(

1
1

)

= (n − 1)! flag graphs with
n vertices. The ordered internal degree sequence divides all
flag graphs into equivalent classes. Therefore, the number of
essentially different constructions produced by Algorithm 1 is:

2(n−1)(n−2)/2

(n− 1)!
.

Table II shows this estimate for a few different flag graph
sizes. From this, we can understand the reason for the high
probability for successful flag graph recovery, even in a large
graph likeLivejournal with 5.2× 106 vertices: there are
so many ways to construct essentially different flag graphs.

C. Grow

We compared our grow algorithm with the one proposed by
Narayanan et al. [1]. There is a mandatory threshold parameter,
which controls the probing aggressiveness, in their algorithm.
Lacking a quantitative guideline to choose this parameter in
[1], we experimented with different values and found that,
with increasing threshold, more nodes were identified but
the accuracy decreased accordingly. Therefore, we used two
different thresholds, which established a performance envelope
for the Narayanan algorithm. The result was two variants of the
algorithm: an aggressive one (with a threshold of0.0001) and
a conservative one (with a threshold of1). The difference lay
in the tolerance to the ambiguities in matching: the aggressive
one might declare a mapping in a case where the conservative
one would deem as too ambiguous.

To account for the bias on the performance measurement
of a particular graph setting, for each target/background graph
pair, we ran multiple simulations with different initial seeds
and took the average as the performance measurement. We
focused our simulations on graphs with hundreds of ver-
tices, which are big enough to make the identification non-
trivial. More precisely, we chose(NC = 400 + NS , NT =
600 + NS , NB = 600 + NS) for Livejournal and
(NC = 100 + NS , NT = 125 + NS , NB = 125 + NS) for
emailWeek. In other words, the ideal result is to correctly
identify 400 + NS nodes forLivejournal and 100 + NS

nodes foremailWeek whereNS is the size of initial seed.
1) Initial Seed Size: Recent literature (e.g., [16]) on

interaction-based social graphs (e.g., the social graph inthe
motivating scenario) singles out the attacker’s interaction
budget as the major limitation to attack effectiveness. The
limitation translates to 1) the initial seed size and 2) the
number of links between the flag graph and the initial seed.
Our seed algorithm resolves the latter issue by guaranteeing
unambiguous identification of the initial seed regardless of link
numbers. As shown below, our grow algorithm resolves the
former issue by working well with a small initial seed.

Figure 5 shows the grow performance with different initial
seed sizes. To simulate the more realistic case that the target
and background graphs are from different sources and there-
fore might differ even among the same group of vertices, we
introduced anedge perturbationof 0.5%, i.e., we added0.5%
of the all of the edges in the target graph.

We note a few points for Figure 5.
1). More nodes are correctly identified with increasing initial

seed size for both Seed-and-Grow and Narayanan.
2). Seed-and-Grow is better (or at least comparable) to

the aggressive Narayanan in terms of number of correct
identifications and is superior when comparing with conserva-
tive Narayanan. ForLivejournal, conservative Narayanan
stops almost immediately (the correct identification statistics
shown in Figure 5 include the initial seed). In contrast, even
for very small initial seed of 5 nodes, Seed-and-Grow correctly
identifies an average of 32 nodes forLivejournal and 62
nodes foremailWeek while only incorrectly identifying 1
node on average.

3). Though aggressive Narayanan correctly identifies more
nodes as the seed size grows, the number of incorrect
identification grows accordingly. This is especially evident
in Livejournal. In contrast, the incorrect identification
number for Seed-and-Grow remains constant inemailWeek
and grows very slowly inLivejournal; in either case, the
percentage of correct identification, as defined by the number
of correct identifications over the total number of identified
nodes, is much higher for Seed-and-Grow than for aggressive
Narayanan.

An ideal grow algorithm should be both effective and
accurate. Effectiveness is measured by the number of correct
identification; accuracy is measured by the percentage of
correct identification. Figure 5 shows Seed-and-Grow is 1).
comparable to aggressive Narayanan in terms of effectiveness

8

nar a nar c sng

correct
incorrect

0
70

14
0

21
0

28
0

(a) Livejournal, seed: 5, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
70

14
0

21
0

28
0

(b) Livejournal, seed: 10, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
70

14
0

21
0

28
0

(c) Livejournal, seed: 15, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
30

60
90

12
0

(d) emailWeek, seed: 5, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
30

60
90

12
0

(e) emailWeek, seed: 10, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
30

60
90

12
0

(f) emailWeek, seed: 15, pertb: 0.5%

Fig. 5. Grow performance with different initial seed sizes. The Seed-and-Grow (sng) algorithm is compared with two variants of the identification algorithm
presented in [1]: “aggressive” (nar a; with a threshold of0.0001) and “conservative” (nar c; with a threshold of1). An edge perturbation of0.5% is introduced
to simulate a more realistic scenario. (a), (b), and (c) are from Livejournal; (d), (e), and (f) are fromemailWeek.

while better in terms of accuracy; 2). comparable to conser-
vative Narayanan in terms of accuracy while better in terms
of effectiveness.

It is arguable that, with a “proper” threshold, Narayanan
will show the same or even superior performance than Seed-
and-Grow. However, lacking any quantitative guideline, such a
proper threshold is hard, if not impossible, to find for the vast
array of graphs the identification algorithm applies to. Even if
one can find such a threshold, it is unclear that its performance
will be superior to that of Seed-and-Grow. In contrast, Seed-
and-Grow has no such arbitrary parameter. The point is that
Seed-and-Growautomaticallyfinds a sensible balance between
effectiveness and accuracy.

2) Edge Perturbation:The impact of edge perturbations on
the grow performance is shown in Figure 6. The initial seed
size was 15.

Correct identifications decreased with a larger edge pertur-
bation percentage for all algorithms. Incorrect identifications
increased with edge perturbation for aggressive Narayanan
while remaining at a constant level for Seed-and-Grow and
conservative Narayanan.

Seed-and-Grow is more effective than conservative Nara-
yanan in all settings. Although aggressive Narayanan is more
effective than Seed-and-Grow for larger perturbation per-
centage, it comes at a much higher cost in accuracy; for
Livejournal, aggressive Narayanan makes more incorrect

identifications than correct ones. In contrast, the number of
incorrect identifications for Seed-and-Grow remain almost
constant with different perturbation percentages.

A high accuracy (i.e., a high percentage of correct identifi-
cations) is desirable, even at a reasonable cost of effectiveness
(fewer nodes identified). This is because, lacking the knowl-
edge about whether or not an identification is correct, accuracy
corresponds to the user’sconfidencein the identification result.
For example, in Figure 6c, even though aggressive Narayanan
correctly identifies 109 nodes on average while Seed-and-
Grow only correctly identifies 70 nodes on average, the
former incorrectly identifies 128 nodes on average while the
latter only incorrectly identifies 20 nodes on average. Without
knowing which nodes are correctly identified, a user has less
than 50% confidence in the results of aggressive Narayanan
while having more than 75% confidence in the results of Seed-
and-Grow.

On reflection, we attribute the relatively high accuracy
of Seed-and-Grow to the conservative design in our grow
algorithm (Algorithm 3). More specifically, we add a mapping
to the seed (i.e., grow the seed) if and only if 1) it is
the mutually best choice for the pair of nodes under the
dissimilarity metric and 2) it stands out among alternative
choices in the sense that it has no tie under the eccentricity
metric. Besides, the algorithm further improves accuracy by
revisiting earlier mappings in light of new mappings.

9

nar a nar c sng

correct
incorrect

0
70

14
0

21
0

28
0

(a)Livejournal, seed: 15, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
70

14
0

21
0

28
0

(b) Livejournal, seed: 15, pertb: 1%

nar a nar c sng

correct
incorrect

0
70

14
0

21
0

28
0

(c) Livejournal, seed: 15, pertb: 1.5%

nar a nar c sng

correct
incorrect

0
25

50
75

10
0

(d) emailWeek, seed: 15, pertb: 0.5%

nar a nar c sng

correct
incorrect

0
25

50
75

10
0

(e) emailWeek, seed: 15, pertb: 1%

nar a nar c sng

correct
incorrect

0
25

50
75

10
0

(f) emailWeek, seed: 15, pertb: 1.5%

Fig. 6. Grow performance with different edge perturbation percentage. (a), (b), and (c) are fromLivejournal; (d), (e), and (f) are fromemailWeek

V. CONCLUSION

We propose an algorithm,Seed-and-Grow, to identify users
from an anonymized social graph. Our algorithm exploits the
increasing overlapping user-bases among services and is based
solely on social graph structure. The algorithm first identifies
a seed sub-graph, either planted by an attacker or divulged by
collusion of a small group of users, and then grows the seed
larger based on the attacker’s existing knowledge of the users’
social relations. We identify and relax implicit assumptions
for unambiguous seed identification taken by previous works,
eliminate arbitrary parameters in grow algorithm, and demon-
strate the superior performance over previous works in terms
of identification effectiveness and accuracy by simulations on
real-world-collected social-network datasets.

In the future, we plan to incorporate tagging (known map-
pings from external information) into our structural-based
grow algorithm, which we expect will further increase identi-
fication effectiveness and accuracy.

REFERENCES

[1] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in
Proc. of IEEE Symposium on Security and Privacy, 2009.

[2] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganog-
raphy,” in Proc. of ACM International Conference on World Wide Web
(WWW), 2007.

[3] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymizing
social networks,” University of Massachusetts, Amherst, Tech. Rep.,
2007.

[4] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relation-
ships in graph data,” inProc. of ACM SIGKDD International Conference
on Privacy, Security, and Trust in KDD, 2007.

[5] A. Korolova, R. Motwani, S. Nabar, and Y. Xu, “Link privacy in social
networks,” inProc. of ACM Conference on Information and Knowledge
Management, 2008.

[6] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” inProc. of IEEE International Conference on
Data Engineering (ICDE), 2008.

[7] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis, “Resisting
structural re-identification in anonymized social networks,” Proceedings
of the VLDB Endowment, vol. 1, no. 1, pp. 102–114, 2008.

[8] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization
techniques for privacy preserving publishing of social network data,”
ACM SIGKDD Explorations Newsletter, vol. 10, no. 2, pp. 12–22, 2008.

[9] J. Scott,Social network analysis: a handbook. SAGE Publications,
2000.

[10] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Incognito:efficient
full-domain k-anonymity,” in Proc. of ACM SIGMOD International
Conference on Management of Data, 2005.

[11] S. Sorlin and C. Solnon, “Reactive tabu search for measuring graph
similarity,” Lecture Notes in Computer Science, vol. 3434, pp. 172–182,
2005.

[12] P. Erd̈os and A. Ŕenyi, “On random graphs,”Publicationes Mathemat-
icae, vol. 6, no. 26, pp. 290–297, 1959.

[13] E. Wright, “Graphs on unlabelled nodes with a given numberof edges,”
Acta Mathematica, vol. 126, no. 1, pp. 1–9, 1971.

[14] A. Narayanan and V. Shmatikov, “Robust de-anonymizationof large
sparse datasets,” inProc. of IEEE Symposium on Security and Privacy
(SSP), 2008.

[15] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proc. of
ACM SIGCOMM Conference on Internet Measurement (IMC), 2007.

[16] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” inProc. of ACM
European conference on Computer systems (EuroSys), 2009.

